Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundSince the 1980s, Pacific Black Brant (Branta bernicla nigricans, hereafter brant) have shifted their winter distribution northward from Mexico to Alaska (approximately 4500 km) with changes in climate. Alongside this shift, the primary breeding population of brant has declined. To understand the population-level implications of the changing migration strategy of brant, it is important to connect movement and demographic data. Our objectives were to calculate migratory connectivity, a measure of spatial and temporal overlap during the non-breeding period, for Arctic and subarctic breeding populations of brant, and to determine if variation in migration strategies affected nesting phenology and nest survival. MethodsWe derived a migratory network using light-level geolocator migration tracks from an Arctic site (Colville River Delta) and a subarctic site (Tutakoke River) in Alaska. Using this network, we quantified the migratory connectivity of the two populations during the winter. We also compared nest success rates among brant that used different combinations of winter sites and breeding sites. ResultsThe two breeding populations were well mixed during the winter, as indicated by a migratory connectivity score close to 0 (− 0.06) at the primary wintering sites of Izembek Lagoon, Alaska (n = 11 brant) and Baja California, Mexico (n = 48). However, Arctic birds were more likely to migrate the shorter distance to Izembek (transition probability = 0.24) compared to subarctic birds (transition probability = 0.09). Nest survival for both breeding populations was relatively high (0.88–0.92), and we did not detect an effect of wintering site on nest success the following year. ConclusionsNest survival of brant did not differ among brant that used wintering sites despite a 4500 km difference in migration distances. Our results also suggested that the growing Arctic breeding population is unlikely to compensate for declines in the larger breeding population of brant in the subarctic. However, this study took place in 2011–2014 and wintering at Izembek Lagoon may have greater implications for reproductive success under future climate conditions.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marinaL.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival ofZ. marinain the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.more » « less
An official website of the United States government
